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ABSTRACT

In this investigation the general solution is derived for the
problem of the optimum linear estimation of a sampled stocnastic
process, when the transition and output matrices of the model of the
process are random parameters that are independent from one sample point
to the next with known mean and covariance. The resulting estimate is
optimum in the sense that it minimizes the trace of the covariance matrix
of the error (a generalized mean-squared-error criterioﬁ).

The notation used in the following discussion is based on the state-
transition approach to linear estimation developed by Kalman. In this
approach the stochastic process is represented as the output of a
linear (possibly time-varying) dynamic system with an independent random
input. o

For current estimation and prediction of the state vector, the
optimum estimate is implemented by & linear dynamic filter with a
matrix-valued gain the only undetermined coefficient. This matrix-
valued gain, as well as the covariance matrix of the error in the
optimum estimate, is determined iteratively for each sample point from
a nonlinear difference equation involving the covariance of the error
at the previous sample point.

The configuration of the solution for linear interpolation with
delay is a linear dynamic filter similar to the one used for prediction.
For each sample period the estimate is delayed, an additional weighting
matrix and delay element must be added to the filter,

All of these results are derived from the sampled version of the
Wiener-Hopf equation, and they apply without modification to stationary
and nonstationary statistics and to growing-memory and infinite-memory
filters.
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I. INTRCDUCTION

A. STATEMENT OF THE PROBLEM

This investigation concerns the linear estimation of a sampled
stochastic process when certain parameters of the process must be treated
as random variables that are’ indépendent from one sample point to the
next. These random parameters may be due to multiplicative noise that
is corrupting the observed samples, to random variations in the sample
period, or to other uncertainties in the a priori knowledge of the pro-
cess. The stochastic process is represented {(for average statistical
properties up to second order) as the output of a linear dynamic system
excited by independent gaussian processes. This model of a stochastic
process is very general, and in particular it includes the important
special case of stationary statistics and rational power spectra as well
as a large class of nonstationary processes. Both the stochastic process
and the random parameters may be stationary or nonstationary, and the
linear estimation includes the case in which the number of observed
samples is growing.

By way of example, consider the following problem. A satellite is
telemetering data to a distant ground station. The original data are
continuous, but they must be sampled before they are transmitted. Noise
in the electrecnics or random fading in the transmission characteristics
of the atmosphere can introduce multiplicative noise. The time between
successive sample points may vary in a random manner because of jitter
or missed samples in pericdic sampling resulting from imperfections in
the equipment, jamming, or natural interference. On the other hand, the
data may be transmitted at random intervals intentionally because of the
randca character of the quantity being measured or in order to counter-
act jamming In other words, the grournd station may be operating on
randomly sampled data with multiplicative noise. From these observed
samples it is desired tc ottain a continuous estimate of the original
data or to predic*t the value of the data at some future time.

The output of a communication system such as the one described here

can be represented as a stochastic process A realistic model of the




gtochastic process must include all the sources of random variation. In
this investigation the model of the stochastic process is based‘on a
combination of the Bode-Shanznon representation of a random proéess and
the "state-transition" method of analysis of dynamic systems introduced
by Kalman [Ref. 1]. The output matrix and the transition matrix of the
sampled model are matrix-valued random parameters because of multiplica-
tive noise and random variations in the sample period. The random para-
meters have a known probability distribution (not necessarily stationary)
independent from one sample period to the next.

The optimum estimate of the state variables is the linear estimate
which minimizes the trace of the covariance matrix of the error. This
is a natural extension of the linear least-squares estimate discussed
extensively in the literature [Ref. 2]. If the stochastic process is
actually generated by gaussian random excitations of a linear dynamic
system, and if the probability distribution of the random parameters is
unimodal and symmetric about the z=xpected value of the parameters, then
the optimum linear estimate gives the conditional expectation of the
desired state variables. Sherman [Ref. 3] has shown that this condi-
tional expectation minimizes the expected value of a large class of loss
functions. Gunckel [Ref. 4] has proved that, when the state variable is
not known exactly. its conditional expectation can be used in the solu-
tion to the general problem of control with a quadratic loss function.
Therefore, one is led to the conclusion that the conditional expectation
is the best estimate in the general control problem as well as in the
estimation problem. On the other hand, the optimum linear estimate
requires only the average statistics of the process up to second order,
and if only the mean and the covariance of the process are known, then
it is the best estimate that can be made with this information.

In addition to estimating the current value of the state variables,
it may be necessary to predict the value of the state variables at some
time in the future, or it may be advantageous to interpolate some past
values of the state vector from more recently observed random variables.
The interpolation with delay should reduce the trace of the covariance

of the error because more random variables have been observed during the
delay.

-2 .
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B. PREVIOUS WORK

The early work of Wiener [Ref. 5] showed that, for a continuous
stochastic process, the problem of linear estimation leads to the
Wiener-Hopf integral equation. For the practically important case of
stationary statistics and rational power spectra, he demonstrated that
the solution to the integral equation could be obtained by spectral
factorization. Under the same conditions of stationary statistics and
rational vower spectra, Franklin [Ref. 6] solved the problem of linear
estimation using periodically sampled data, and Amara [Ref. 7] general-
ized this work to include multivariable systems.

Concurrently, there has been considerable interest in the literature
on the analysis and stability of systems with random parameters [Ref. 8,
9], although not much work has been concerned with the design of ‘filters
for these systems. Kalman [Ref. 10] considered the optimum control of
a linear system that is randomly sampled using & quadratic error cri-
terion and a step input. Gunckel [Ref. L] has extended more recent work
cf Kalman [Refs. 11, 12] to provide a general solution to the problem
of the control of a linear system with random parameters. In particular,
he shows that, if it is desired to minimize the expected value of a
quadratic loss funetion, the conditional expectation of the state
variables should be used in the optimum control procedure. Gunckel's
work separates effectively the problem of estimation of the state
variables from the problem of control of the state variables Hié
results are especially important because under the conditions discussed
in the previous section, the optimum linear estimate derived in the
present investigation is the conditional expectation of the state
variable and therefore can be used in the optimum control procedure.

For a randomly sampled, stationary stochastic process, Bergen
[Ref. 13] has determined the spectral density from a convolution inte-
gral that can be evaluated in some cases by the method of residues. A
synthesis procedure to determine the best linear time-invariant continu-
ous filter for these cases is based upon the standard Wiener factoriza-
tion of the sampled power spectrum [Ref. 1h].

Buetler [Refs. 15, 16] has generalized the Wiener theory to include

-3 -
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stochastic processes with random parameters for continuous stationary
systems. He obtained practical solutions for two cases--the optimum
linear filter when the prediction time or lag time is a random parameter,
and the optimum linear estimate when the system gain is a random para- h
meter (multiplicative noise). Shaw [Ref. 17] has considered the problem
of dual-mode filtering for a continuous stationary stochastic process
when the instantaneous model of the process varies randomly between two
possible models.
Kalman [Ref. 1] has formulated the whole problem of linear estima-
tion from sampled data in matrix notation in terms of state-transition.
The problem is approached from the peint of view of conditional expecta-
tions rather than from the sampled version of the Wiener-Hopf equation.
Kalman and Bucy [Ref. 18] have extended this formulation to the linear
estimation of a continuous stochastic process when white noise is added
to the measurements. In this extension the results are derived from the
continuous Wiener-Hopf integral equation.
The work in this investigation represents a generalization of this
approach to the problem of linear eStimation in the presence of random '

parameters.
C. OUTLINE OF N&W RESULTS

The solution to the general problem of the optimum linear estimate
of a sampled stochastic process with random parameters is derived in
this investigation Chapter II is a review of the state-transition
approach to linear estimation using matrix notation, with appropriate
examples of random parameters included.

In Chapter III the optimum filter for the current estimation and
prediction of the process described in the previous chapter is derived
from the sampled Wiener-Hopf equation; the desired weighting coefficients
and the covariance of the error in estimation are determined iteratively
for each sample point from the covariance of the previous estimate.

These results are extended in Chapter IV to the problem of optimum .
interpolation with delay @t time tn the optimum estimate is desired

of the state vector at time t where t < tn). Chapter IV presents

b




the first thorough investigation in the literature of optiwmum interpola-
tion with delay for a nonstationary stochastic process.

Chapter V applies the ideas developed in this investigation to the
estimation of a stationary stochastic process with a random sample
period, and for a simple example the optimum filter is compared with the
best linear time-invariant filter.

For current estimation and prediction, the optimum estimate is
implemented by a linear dynamic filter. The only undetermined coeffi-
cient of the filter is the matrix-valued gain, which is determined
iteratively for each sample point. When the statistics of the process
are stationary, the matrix-valued gain approaches a steady-state value
as the number of sample points approaches infinity.

The configuration of the optimum solution for linear interpolation
with delay is shown to be a linear dynamic filter similar to the one
used for prediction; but, for each sample period the estimate is delayed,

an additional weighting matrix must be determined.

In order to relate this investigation to the conventional approach
to linear estimation, all of these results are derived from the sampled

version of the Wiener-Hopf equation
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II. DESCRIPTION OF THE SYSTEM :

A. INTRODUCTION ’

This chapter will provide an introduction to the state-transition
approach to linear estimation. The state of the system is some quanti-
tative information (such as a set of pumbers) which is the minimum amount
of data necessary to predict the future behavior of the system. When
applied to estimation, the state is the data necessary to predict the
expected value of the future behavior of the system. The state transition
specifies the dynamics of the system--how the state at one instant of
time is transferred to the state at a later instant of time.

This paper will consider only those stochastic processes which can
be represented (for average statistical properties up to second order)
as the output of a linear dynamic system excited by independent gaussian
processes. Therefore, at any instant of time, the state of the system
can be represented by an r-dimensional vector, and the state transition
is an r x r matrix with the properties enumerated in Section II-C. This N
representation is a very géneral one, and in particular it includes the
important special case of stationary.statistics and rational power
spectra, as well as a large class of nonstationary processes. In
Sections II-B and III-C this representetion is presented for two common
stationary processes.

The sampled stochastic process is represented in Section II-D as a
linear-difference equation with random parameters and random excitation.
Examples of random parameters are discussed in Section II-E for the
output matrix (caused by multiplicative noise) and the transition matrix
(when the sample period is an independent random variable). It should
be emphasized that the random parameters are not the only source of
noise; both correlated and uncorrelated noise can be included in the
vector representing the state of the system.

Finally, in Section 1I-F are discussed the reasons for restricting
the optimum estimate to a linear combination of the observed random -

variables.

In the notation convention followed here, A? is the transpose of
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A, and E [A] 1is the expected value of A, When v isan m X1l

e M ‘ﬁli .~

vector, then vTv is the scalar product resulting in a scalar, and
va is the vector product resulting in an m X m matrix. The elements

of the A matrix are denoted by a and the components of the vector

iJ
by vy

B. MODEL OF THE CONTINUOUS PROCESS

The model of the stochastic process is based on the Bode-Shannon
representation of a random process and the "state-transition" method of
analysis of dynamic systems introduced by Kalman [Ref. 1]. A linear

dynamic system can be described by the following ordinary differential
equation,

d
— x(t)
dt

F(t) x(t) + 6(t) v(t)

y(t) = M(t) x(t) - (1)

is an r X 1 vector that is the state of the system,
isan m X 1 vector that is the input to the system,

t)

t)

t) is a p X1 vector that is the qutput of the system,'

t) is an r X r matrix representing the dynamics of the system,
t)

is an r Xm distribution matrix representing the constraints

on the input,

M(t) isa p X r output matrix.

The components X, of the state vector x are called the state
variables, while the components of the output y are linear combinations
of these state variables. The matrix F may be nonsingular and repre-

sents the dynamics of the system. In stationary systems the matrices

F, G, and M are constants.

The matrix block diagram of the system is presented in Fig. 1. The

-7 -




x(t) y(t)
M(t)

x(t)

v(t) G6(t)

ol =—

F(t)

FIG. !. MODEL OF THE CONTINUOUS STOCHASTIC PROCESS.

thick lines indicate vector-signal flow, and the transfer function 1/s
actually stands for r integrators such that the output of each is a
state variable. The dynamics matrix F(t) indicates how the outputs
of the integrators are fed back into the inputs of the integrators.
Thus fij (t) 1is the coefficient with which the output of the jth
integrator is fed back to the input of the ith integrator.

This linear dynamic system represents a stochastic process when the
input to the system, v(t), is a random process. In the model used in
this investigation, the input v(t) is an m X 1 vector-valued random

process with zero mean and with the m X m covariance matrix

E[v(t) vi(s)] = V(t) 8(t - s), (2)

where § 1is the Dirac delta function. The defining property of the

delta function is, for any function V(t) bounded and continuous at s,

8(t -s) =0 t #s

(203

[ V() (t - s)at = V(s). (3)

=00

This definition is satisfactory because only the integral of the covar- -
jance in Eq. (2) is ever required. Because the input v(t) 1is an inde-

pendent random variable with zero mean,

-8 -




Blv(t) X'(t,)] =0t >t (%)

When the stochastic process is stationary with a rational power
spectrum § (s), the transfer function H(s) of the linear dynamic

system representing the process is obtained by factoring the power
spectrum

$ (s) = H(s) H(-s) (5)

where H(s) contains all the poles and zeros in the left half plane.
) For example, consider the first order stationary Markov process

with the power spectrum and autocorrelation function

g (r) = e Pl (6)

The power spectrum is the Fourier transform of the autocorrelation
function [Ref. 19]; therefore, both functions give the same information
about the process. In this example the transfer function of the linear

system is

1/2
H(s) = {28) (1)

B + s

The linear differential equation describing the process is

dx(t .
L) - px(s) + v(t), )

with the input v(t) an independent random variable with zero mean and

covariance

E[v(t) v(s)] = vy 8(t - 8) =288(t - s). (9)

The model of the stationary Markov process is presented in Fig. 2.

-9 -




v(t) x(t)

FIG. 2. MODEL OF A STATIONARY MARKOV PROCESS.

The general solution to the ordinary differential equation, Eq. (1),
is

t
x(t) = ;(t,to)x(to) +f 3 (t,T)G(T)v(r)dr t >ty (10)
tO
where i(t,to) is an r X r matrix called the transition matrix of
the system. From Egs. (4) and (10), it is easily seen that
E[x(t)xT(t )] = ¥(t,t.) E[x(t )xT(t )] t >t
0 ’70 0] 0 -~

o (11)

since x(to) is independent of v(t) for T > tor

C. TRANSITION MATRIX
The pertinent information about the transition matrix is presented
in this section. For a more complete treatment see Coddington and

Levinson [Ref. 20]. The transition matrix is a nonsingular matrix

satisfying the differential equation

d

— 3% =r(v)8§, (12)
at

made unigque by the requirement that

- 10 -




¥ (tyty) = I, (13)

where I is the identity matrix.
Two properties of the transition matrix are

3(t,t,) 8(tpt) = 8(tg,ty)
¥ ,t) = Ot ,t,) (14)
2771 1’72’
t
If the matrices F(t) eand \/. F(+)dt commute, then the transition
%
matrix can be written
t
¢ (t,ty) = eXP<#[ F(T)dT> (15)
%

where the definition of

k

I o

exp(B) = I +-§é

k=1

(16)

"

For a discussion of the properties of commuting matrices see Gantmacher
[Ref. 21]. In particular, the two matrices commute if F(t) is diagonal
or if F 1is a constant. When the F matrix is constant, the transition

matrix ¥ is stationary, and it can be written

o+ Trtg) = 8 (1) = exp(Fr) = &', (a7)

§ (t
vwhere exp(Fr) is called the exponential of the matrix Fv.
When the characteristic roots of F are distinct, then the matrix

¥ 1is similar to a diagonal matrix A with diagonal %l,%2,...,%r, so
that

F = DAD'l, (18)

- 11 -



where D 1is a nonsingular r X r matrix and the characteristic roots

Ai may be complex. Therefore, the transition matrix is

] -1

$(7) = exp(Fr) =D - exp(AT) - D . (19)
This is réadily seen to be the case because

pAD ™)K~ < (n
exp(nATD’l) =1+ ( AL =D<I +-Z: v pt (20)

This method of taking the exponential of a matrix is very satisfactary
when F 1is already diagonal or nearly so, but sometimes in actual prac-
tice this diagonalization may be difficult to perform, and an alternate
method may be more efficient.

An alternative method for taking the exponential of a matrix,
given by Friedman [Ref. 22], is based on the following theorem in his
chapter on Spectral Theory of Operators:

"If A is a matrix whose eigenvalues, arranged in order

of increasing absolute value are A ,A,,...,A  and if g(n\)

is an analytic function of A in a circle around the origin

with radius greater than l%nl, then g(A) equals r(A),

the polynomial of degree n - 1 for which

g(7\k = r(x, k=1,2,...,n." (21)

In particular, this means that if A is an n X n matrix with distinct
characteristic roots K sNyseeesN , then
2 n

Eg a (At (22)
i=1

where the ak are evaluated by the set of equations

- 12 -
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I

n
o L °b’*§2 ai(xkt)i k=1,2,...,n0. (23)

When

s0 that xv is a characteristic root of multiplicity v for A, then
Eg. (21) is modified as follows:

SJ(')\V) = 1‘3(7\‘,) J 0,1,2,...,v-1

g(%k) = r(%k) k = v+l, v+2,...,n0. (25)
Thus Eq. (23) is modified to
At ad 2
1pd, Vv i .
JitYe = 3 oy +§‘ ai(7\vt) J=0,1,2,...,v-1
an ~
v i=1
Oy \ :
e = °b'+§5 ai(xkt) k = v+l,v+2,...,0.  (26)
i=1 :

To illustrate this method, the exponential will be taken of the
arbitrary 2 X 2 matrix At where

811 %12

A = . (27)

821 8y

The characteristic roots are determined from
A - a1 =0

(all = 7\)(8.22 - ) 0

B V-~

- 13 -




= L L - e
A Z(all + a22) +3 (a.ll a22) + halgagl (28)
The two characteristic roots kl and Xg are distinect if
(a.. -8,.)° + k. 8. 0 (29)
11 22 12721
For the 2 X 2 matrix Eq. (23) is
?\lt
e = ao + al)\lt
?\21:
e = Uy + 01?\21:, (30)
with the solution
?\et At
A e - A& 1
1 2
ao =
}\l - ?\2
7\lt ?\2t
e -e
alt = —— (31)
?\l - ?\2
Thus, when the characteristic roots of the 2 X2 matrix A are
distinct, the exponential of the matrix At is
ALt At At At
2 1 1 2
At Ale - Age 1 O e - e 85, 85
e = +— . (32)
N 0 1 N 8 a

21 22

If the characteristic roots are not distinet, then from Eq. (26), the
exponential of the matrix At 1is

a +1 =Nt a
At .\lt 11 1 12

e = e . (33) [

| 221 a22+l-)\lt

- 14 -



As an example, the exponential in Eq. (32) will be used to calculate
the transition matrix of a stationary stochastic process with two state

variables. Consider the process with the following power spectrum and
autocorrelation

(B+s)(p-s)L

- $ x,x%,(s) =
PR e 8P A0 - 8)F 4 57
Rxlxl(f) = e-BITI cos yT - B 2sln 2T
B+
kg (6% + 7°) -
= 3
262 + 72

The transfer function of the dynamic system is

1/2
H(s) = B+ s) L7 (35)

(6 - s)° +9°

The model of this stochastic process is presented in Fig. 3, where the
two state variables are xl(t), the observed random variable and the
output of one integrator, and xe(t), the output of the other integrator.

The two linear differential equations describing the system are

V|(t)

N xa(t) *; xy(t)

-'}’2

FIG. 3. MODEL OF A PROCESS WITH AN EXPONENTIAL COSINE AUTOCORRELATION.
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dxl(t)

dt

= axl(t) + xz(t) + vl(t)

and
dxa(t)

dt

2
= - 7% (8) - Bxy(t). (36)
The input vl(t) has 2zeroc mean and covariance

Blv, (t)v,(s)] = v}, 8(t - 5). (37)

For this system the 2 X 2 dynamics matrix F is

F = (38)

and the characteristic roots are complex with

>
i

1 -B - Jy

>
"

o= - B+ 3y (39)

where

J 1is the imaginary unit number.

Fron Eq. (32) the exponential of the matrix Ft is

3(t) = et = Pt [cos 7t 1/y sin yt
- v sin 9t cos 7yt ()+O)

where the sum of the complex conjugate exponentials has been written in

terms of sines and cosines
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sin yt j(e-'ht - e+d7t)

j-~

[V

cos yt (e-j7t + e+37t) (k1)

The model of the first-order stationary Markov process in Fig. 2 and the
model of the process with exponential cosine autocorrelation in Fig. 3

will be used in the numerical examples calculated in the following
chapters.

D. MODEL OF THE SAMPLED PROCESS

In many cases, a linear dynamic system, such as that shown in Fig. 1,
is sampled at points in time to’tl""tk’°"tn called the sample
points, where the subscript k indicates the kth sample. The time
between successive samples is called the sample period Tk’ which is

given by

T, o=,y - e (k2)

It is assumed that all the switches in the sampling operation operate
synchronously and that the sampling operation can be represented as
the result of modulating an impulse train 5T(t) with the output of
the system y(t) so that

y (8) = y(t) bg(t), (43)

where the impulse train 5T(t) is given by

00

oplt) = ) Bt - t,). (1)

k=0

When a linear system with an impulse z2sponse h(t) follows the sampling

operation, then the output of the linear system at time t is
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z(t) =z h(t - tk) y(tk) t, <t <t .- (45)
k=

w4

If a clamp or zero-order hold follows the sampling operation, then the
output of the hold at time t is y(tn) with t <t <t ..
When the state of the system is considered only at the sample
points, the stochastic process is said to be discrete, and the model

under consideration becomes

x(tn+l) =2 (tn+l’tn) x(tn) + u(tn)

y(t,) = M(t)) x(t)), (146)

it 1s the time of the nth sampling instant,
x(tn) is an r X 1 vector which is the state of the system,
u(tn) is an r X 1 vector which is the effect of the random
inputs to the system between the n and n + 1 sample
po.nts,

y(tn) is & p X 1 vector which is the observed random variable,

Q(tn+l,tn) is the r X r transition matrix,

M(tn) is the r X p output matrix.

A matrix block disgram of the sampled system is presented in Fig. k.
The element marked DELAY permits the state of the system to change only
at the sample points.

For a discrete stochastic process the properties of the sampled
excitation u(tn) may be given directly, but they can also be derived
from the properties of the random input to the continuous system v(t).
By comparing Egs. (46) and (10) it is seen that

i
n+l

ateg) = [ 8,007 60 v(n) . (47)
t

Thus, the sampled excitation u(tn) also has zero mean, and the
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l(tn) Y(tn)
- met,)

o(t,*1, t,)

FIG. 4. MODEL OF THE SAMPLED STOCHASTIC PROCESS.

delta-function property of the covariance of the random input v(t) in

Eq. (2) means that the covariance matrix of the excitation is

tn+l tn+l
E[u(tn)uT(tn)] = E L/ t!(tn+l,T)G(T)v(T)dT \/ vT(G)GT(U)iT(tn+l,G)dG
" L
tn+l
T T
=\]- Q(tn+l,T)G(T)V(t)G () & (tn+l,T)dT. (48)
t

n

The sampled excitation is an independent random variable, so from

Eq. (&)
E[u(tn)x¢(t)] = 1§ £ >t | (49)

In this investigation, the output matrix M and the transition
matrix $ of the model in Fig. 4 are not known exactly, but they are
considered to be matrix-valued random parameters of the model with
known probability distribution independent from one sample point to
the next. The matrices M and & will be random parameters if, for
instance, the observed random variable has been corrupted by multipli-

cative noise or if the sample period is a random variable.

- 19 -

R 2 Sy




More precisely, it is assumed that a known cumulative distribution
function FM[C,n] is defined over the components of M(tn), and a
different known cumulative distribution function F;[D,n] is defined
over the components of ¢ (tn+l’tn)' When PR[A] 1is defined as the
probability that an event A occurs, and B < C, where B and C are
matrices, is defined to imply that bij < cij for all i and Jj, then

PR[M(tn) <) = FM[C,n]

PR[ Q(tm_l,tn) < D]

FQ[D)n]} (50)

where FM[C,n] and FQ[D,n] are the known cumulative distribution
functions. These distribution functions are not necessarily stationary,

but the random parameters must be statistically independent from one
sampling instant to the next so that

PROM(t ) < A; ®(t ., t ) <B; M(t ) <C;8(t ,,5 ) <D)

= FM[A;m] FQ[B,m] FM[C,n] FQ[D:H]' (51)

Finally, it is assumed that E[M(tn) MT(tn)], and E[Q(tn+l,tn)

T(tn+l,tn)] exist for all n.

%
The expected values of the two matrices M and ® will always exist,

also, by the previous assumption, and this expected value will be denoted
by & superscript bdar,

EM(t )] = M(t )
E[Q(tn+l’tn)] =0 (tn+l’tn)' (52)

The difference between the actual value of the matrix and the expected

value will be denoted by a superscript tilde, so
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#

M(t ) = Mt ) + ﬁ(tn)

— 3 ” ,
§ (tn+l’tn) B i(tn+l’tn) = (tn+l,tn)' \53)
In this investigation it 1s not necessary to know the probability
distribution of the random parameters. The only information which is
needed is the mean of the parameters, ﬁ(tn) and i(tn+L’tn)’ and the

covariances

B(Hi(e )x(t, )x" (¢ (e ) ]

and

~ T ~
Blg(t ot )x(e )x (e )) alt ot )]
E. EXAMPLES OF RANDOM PARAMETERS

The probability distribution of the random parameters M and @
in the sampled model in Fig. 4 may have any form, but there are some
common probability distributions which can be used to approximate situas-
tions ocecurring in actual practice. In this section the mean and the
covariance of the random parameters will be determined for five of these
situations; two cases of multiplicative noise (amplifier noise and
exponential noise), and three cases of randomness in the sample periods
(periodic sampling with jitter, periodic sampling with independent
misses, and purely random or "Poisson" sampling). For a complete dis-
cussion of the probability laws used to approximate these situations
see Parzen [Ref. 23].

In the first two cases a single state-variable is corrupted by
multiplicative noise and the results can be extended to the multivariable
case. Let € be an independent random variable with normal distribu-

tion. The cumulative distribution function is

2
1%
P 1 r p - 5 2
F (p) = / £ (v)dv = ——— } e 7 v (54)
:w 2N o :w
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where fe(v) is the probability-density function. The random variable
€ has mean zero and variance 02 and

2.2
E [exe] =7 /2 (55) )

One source of muitiplicative noise occurs when the state variable
passes through an amplifier with noisy gain. Then

¥ (5.) = AL + €) x (¢ ),

where A 1is & constant. The mean and covariance are

E[M(tn)] E[A(L +€)]=A

E[M(e )x(e_)x' (5 ) (v )]

A% E[ee} E[xi(tn)]

A%o"E [ (6 )] (56)

Another source of multiplicative noise is the result of taking the
exponential of a state variable with added white noise. In a communica-
tion system in which the range of the state variable is several orders
of magnitude (such as the reflected pulse in a radar system where the
energy is inversely proportional to the fourth power of the distance),
it may be desirable to transmit the logarithm of the state variable and

then convert this at the receiver to the estimate of the original state

variable. In that case,

log yl(tn) log xl(tn) + €

y (¢ ) = e x () (57)

and the mean and covariance are
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02/2

E[M(t )] = E[e] = e
B(H(e, )x(t, )% (6 (v )] ={:E{e2€1 - (E[eei%} B(x5(t,)]
0'2 0'2 2
=e” (7 -1) E[x{(t )] (8)

In the remaining three cases, the transition matrix (tn+l’tn) is
the random parameter because the sample period Tn is an independent
random variable. It will be assumed that the dynamics matrix F is
constant or can be satisfactorily approximated by a constant over the
sample period Tn, but the constant and the probability distribution of
Tn can change from one sauple point to the next, so the sample period
is not necessarily stationary. The transition matrix (tn+l’tn) is

an r X r matrix-valued random variable given by

FTn
(bt ) =e ™ (59)

The exponential of the matrix F Tn is composed of terms of the form

where Ai is a characteristic root of F of muitiplicity v. The
powers of Tn occur when Ai is a multiple characteristic root, as in
the 2 X 2 matrix in Eq. (33)-

In order to determine the expected value and the covariance of the
transition matrix, it is necessary only to know

E[e "]

for all values of A both real and complex. If that expected value is

known, the other expected values can be calculated by the relationship

E[T " e ® = —E[le P (60)




The three situations in which the sample period can be considered
as a random variable, and their associated probability distributions,
are as follows: periodic sampling with jitter (normal distribution),
periodic sampling with independent misses (geometric), and purely
random or Poisson sampling (exponential). The pertinent information
concerning these three probability laws is presented in Table 1, and

their characteristics are discussed in the remainder of this section.

TABLE 1. THREE PROBABILITY LAWS FOR RANDOM SAMPLE PERIODS.

Probability
Law Normal Geometric Exponential
Sampl e Periodic with Periodic with Purely Random
Pattern Jitter Independent or
Misses Poisson
Paramet.er‘s - 0<T<®
of.Prol'mbx)‘.:Lty 0<3<T<® 0<p=1q<1 0 <upu<®
Distribution - -
Probability k-1 gor 7 = kT e HT
- = for 720
Density exp [- (T - T )2/202] qu =0,1,2,... H -
£ (n Vor o 0 Otherwise 0 Otherwise
Mean _
E(7] T T/p 1/
Variance
E[r?) - E2[7] o? qT?%/p? Vu?
T 2
E[N] eTAHTN pMT/(1 - gehT) W/ ()

Jitter occurs when the sample pericd is nea®ly constant, but varies
slightly from period to period. In certain anti-jamming applications
the sample period is varied randomly in this manner, or the variation
may be unintentional due to imperfections in the equipment. An approxi-
mation to the effect of jitter is given by the normal distribution of

sample periods,

1 o2, 2
FT[T]=T+_fe'V/20dv 0<30<T<w (61)
n Yor o ¥
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or, alternatively,

T, =T+e¢ (62)

where T is the mean of the sample period, and € 1s the normal random
variable with mean zero and variance defined in Eq. (54). In the normal
distribution in Eq. (61), there is a finite probability that the sample
period will be negative; therefore, one might argue that a better

approximation would be to truncate the distribution so that it is zero
outside the region

0<T <@2F.
n
This is a velid argument, but in Eq. (61) the standard deviation is

constrained to be less than one-third of the mean of the =ample period

T and, under this constraint, the area of the normal distribution that

must be truncated is less than 2.6 X 10-3; therefore, the original
approximation should be valid.

Periodic sampling with independent misses results when the intended
sample period is constant but at each sampling instant there is a fixed
probability gq that the random variable will not be observed. This
situation may arise when the receiver rejects the signal unless the
signal-to-noise ratio is above some threshold value. The probability

distribution of the actual sample period 1s a geometric distribution
given by

S

]

fn (xT) = p

n

=1,2,... 0<p=1-g<1

=0 otherwise (63)

When the number of sample points in a given interval of time has a
Poisson distribution, the samples are being received at purely random
points in time. The samples may be transmitted in this way intentionally
to avoid jamming, or because of the random character of the quantity

being transmitted. For this case the sample period has an exponential

distribution
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Fp (1) = u e HT T >0 O<u<w (64)

La} =0 otherwise

F. THE OPTIM/M ESTIMATE

The purpose of the design procedure presented in this paper is to
estimate the state vector of a stochastic process from information
obtained from the a priori knowledge of the process and the observed
random veriables. The difference between the actual value of the

state vector and the estimate is the error, which is written

Xt + o/t ) = x(t_+a) - x(t_ +a/t ), (65)

where

i(tn + a/tn) is the (r X 1) vector that is the error in the
estimate of the value of the state vector at time
tn + , given the observed random variables
y(t, 1yt 1)y y(tg)s

x(tn + Q) is the actual value of the state vector,

Q(tn + a/tn) is the estimate of the value of the state vector
at time tn + Q, given the observed random variables

Y(tn)} Y(tn-l)’ ceey Y(to)'

The best estimate is the one which minimizes some function of the error.
For @ positive the operation of estimation is calied prediction; and
for  negative, it is called interpolation or smoothing.

In this paper the estimate will be confined to linear combinations
of the observed random variable, and the optimum estimate will be the
linear estimate that minimizes the trace of the covariance matrix of

the error. The covariance of the error is an r X r matrix defined as
/ _ z ~T
P(tn + a/tn) = E[x(tn + a/tn)x (tn + a/tn)], (66)

The trace is the sum of the diagonal terms of the matrix. The trace

of the covariance is the expected value of the sum of the squared error
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in the estimation of the individusl state variables, so the optimum
estimate is a natural extension of the "linear-least-squares" estimate
that is discussed extensively in the literature.

The question naturally arises as to which is better--a linear esti-
mate or a nonlinear estimate. Doob [Ref. 24] proves rigorously that the
estimate of a quantity that minimizes the expected value of the squared
error is the conditional expectation of the quantity with respect to the
given information. For a linear dynamic system excited by random
variables with normal distribution, the conditional expectation of the
state vector is indeed a linear combination of the observed random
variables and the linear-least-squares estimate will be better than any
nonlinear estimate in minimizing the expected wvalue of the squared error.

Sherman [Ref. 3] has proved that the conditional expectation can
minimize the expected value of a still larger class of loss functions.
In particular, when e 1is the random variable representing the error,

and the loss function L(e) 1s a positive function, symmetric and non-
decreasing about zero, so that

0 S 1Le) = L(-e)

WA
WA
WA

L(el) L(e2) when 0 =e =e, (67)
and if the conditional distribution of the quantity being estimated is
symmetric and convex sbout its conditional expectation, then the condi-
tional expectation minimizes the expected value of the class of loss

functionsincluded in Eq. (67). This class of loss functions includes:

Ll(e) o 2
L2(e) = eh
L3(e) = |e|
Lh(e) = -b<e<b
=0 otherwise. (68)
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In this investigation, Sherman's results mean that if the stochastic
process 1is the output of a linear dynamic system with a gaussian input,
and if the random parameters have a symmetric convex probability distri-
bution, then the optimum linear estimate will be better than any other
estimate, linear or nonlinear, in minimizing the expected value of the
class of loss functions in Eq. (67).

The optimum linear estimate has the additional adventage tha* only
the first- and second-order statistical averages are required. 1In
practical situations it is often very difficult to measure more than
this, and any nonlinear estimate would require more informstion than
Just the first- and second-order statistical averages to improve over
the optimum linear estimate. For these reasons, in this investigation
the optimum estimate will be the linear estimate that minimizes the

trace of the covariance matrix of the error.
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III. CZTIMUM FILTERING AND PREDICTION OF RANDOM-PARAMETER PROCESSES

A. INTRODUCTION

In Chapter II the sampled stochastic process was represented as a
matrix-difference equation with random parameters. The optimum estimate
was defined as the linear estimate that minimized the trace of the co-
variance matrix of the error. In this chapter it will be proved that
the optimum estimate of the current value of the state vector at the
current sample point is a linear combination of the optimum estimate at
the preceding sample point and the random variable observed at the
current sample point. The optimum estimate is implemented by a linear
filter with the only undetermined coefficient being a matrix-valued
gain. This matrix-valued gain as well as the covariance of the error
in the optimum estimate is determined by a nonlinear difference equation
that can be solved iteratively for each sample point. The optimum
current estimate becomes the optimum prediction of a future value of
the state vector when it is matrix-multiplied by the expected wvalue of
the transition matrix.

These results are obtained from the solution to the matrix-valued
sampled Wiener-Hopf equation, derived in Sec. III-C, but first the

Markov property of the optimum linear estimate will be discussed.

B. MARKOV PROPERTY OF THE OPTIMJM ESTIMATE

For a Markov process, the probability functions relating to the
future depend on the present state, but not on the manner in which the
present state has emerged from the past [Ref. 25]. The model of the
stochastic process developed in Chapter III has the Markov property,
and in Sec. III-D it will be proved that the optimum linear estimate
has the Markov property because the optimum estimate of the current
value of the state vector at the current sample point is a linear combi-
nation of the optimum estimate at the preceding sample point and the

observed random variable at the current sample point In other words,
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R(tp/e)) =8 (et IR(6 /6 ) + K(s )y(s,) (69)

where ® *(tn,tn_l) and K(tn) are rxr and r x p linear
weighting matrices. (Note that o (tn,tn_l) is an arbitrary
weighting coefficient different from the expected value of the transi-
tion matrix ® (tn,tn_l), which does not have the asterisk.) This sec-
tion will explore the reasoning which might lead one to the hypothesis
of Eq. {69).

First, assume that at time tn-l the exact value of the state

vector is known; therefore,

x(e o/t 1) = x(t ). (70)

If the transition matrix in the sample period is equal to its expected
value & (tn,tn_l) and if there are no random inputs to the system

during the sample period, then the next state will be

x(t) =0 (t,t )x(t 1), (1)

and the best estimate

x(t)) =8 (t,t _)%(e 1) = x(t) (72)

will be the exact value of the state vector. If the output matrix is

also equal to its expected value ﬁ(tr), the observed random variable
will be

y(t,) = Mt Ix(x ) = M6 ) & (6,5, )x(e_ ). (13)

and no new information about the process will be gained by looking at
it, because its exact value is already known. This 1s not a very
interesting problem, and, naturally, in actuality things are not so
simple. There will be errors in the estimate of the state at the pre-
various sample instant, i(tn_l/tn_l); there are random excitations to
the system u(tn_i), and variations in the transition and output matrices
) (tn’tn—l) and ﬁ(tn).
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The only way one discovers these random variations is by comparing

the observed random variable y(tn) with its expected value which is i
given by Eq. (73). All the new information about the process comes from

the difference between y(tn) and ite expected value
y(e ) - M) o (vt )x(e ).
Because the estimate is restricted to linear operations, it is reasonable
to weight Lhe new information with some linear matrix-valued coefficient
K(tn) and add it to the previous estimate in Eq. (72), so that
A = N
x(tn/tn) =9 (tn/tn_l)x(tn_l/tn_l)

L X )Dy() - M) § (e /5 OR(e /6 O] (Th)

Combining terms in Eq. (T4) gives

®(t /) = [T - k(e Mt D)o (bt )%(e, 1/t () + Kt Iy(t)

where I 1is the identity matrix and

[T - k(e D6 )] T (st ) =38 (6, ), (75)

the arbitrary r x r weighting matrix in Eq. (69).
This reasoning started with the assumption, in Eq. (70), that at
time tn-l the exact value of the state vector was known, but all the

ideas still apply if only the expected value of the state vector is

known. The key idea in this discussion can be summarized as follows:
When the stochastic process can be represented as an rth-order linear
Markov process, the optimum linear estimate of the state vector of the
process can also be represented as an rth-order linear Markov process.
This approach to the linear estimate of a stochastic process was
first developed fully by Kalman [Ref. l] for a process with deterministic
parameters. He used conditional expectations and the projection theorem,

and considered in detail the linear estimate

= Yl



(b0 /e) =0 (6, L )R /e )+ AT (1 )y(E ), (76)

where

°*(tn+l’tn) =:q’(t’n+l’t'n) - A‘*(tn)M(Jr’n)' (77)

He proved that any other estimate §(tn + a/tn) for a positive could
be derived from the one in Eg. (76) by the relationship

-1~

:Ac(tn+a/tn)=¢(tn+a,tn)[¢(t >t,)] X(tn+l/tn), (18)

n+i
where AT represents the inverse of A.

The quantity that in this investigation, is analogous to the quan-~
tity in brackets in Eq. (78) is & (tn+l’tn)’ which may be singular
and does not always have a unique inverse. Therefore, for the stochastic
process with random parameters this approach must be modified to the

linear estimate in Eq. (69).
C. THE SAMPLED WIENER-HOPF EQUATION

Any linear estimate of the state vector will be a linear combination
of the observed random variagbles so that
n
X = t o+
x(t +a/t ) Z Al ot )y(t)), (19)
y=0

where g(tn+a/tn) is an r X1 vector that is the estimate of the
state vector x(tn+a), given the observed random
variables y(tn),y(tn_l),...,y(to), and
A(tn+a,tv) is an r x p matrix which is the vth set of
weighting coefficients of the estimate.

The sampled Wiener-Hopf equation is a matrix-valued linear equation

that is satisfied by the weighting coefficients A(tn+a,tv) when the

linear estimate is optimum.
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The error in the linear estimate in Eq. (79), as defined in Eq. (65),
is

e

;c(tn+a/tn) = x(t_+a) - ?c(tnm/tn) = x(t +a) - A(tnw,tv)y(tv)

Il
o

1'%
s (80)
Substituting the error in Eq. (80) into the covariance of the error
defined in Eq. (66) gives

P(tn+a/tn) E[i(tn+a/tn)§¢(tn+a/tn)}

E[x(tn+a)xT(tn+oz)]

T

Attt JE[y(t )X (¢ +0)]

<
o

sl

]

E[x(tnm)yT(tv) (6 st )

<
1l
o

e
s
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